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Abstract

This thesis presents ADTViewer, a plugin for OpenSearch Dashboards that provides

an interactive graphical interface for intrusion analysis based on Attack Defense Trees.

The system integrates with PANACEA, a framework that utilizes Timed Stochastic

Games for the synthesis of optimal defense strategies. Through ADTViewer, users

can load, visualize, and modify attack trees, explore optimal strategies, compare de-

fense policies, and analyze the costs associated with different security scenarios. The

system architecture was developed using a modular approach, combining technologies

such as React, D3.js, Docker, and a backend infrastructure based on PostgreSQL and

OpenSearch. The plugin is designed to ensure scalability and efficiency, reducing the

complexity of attack analysis and improving intrusion response management. A case

study demonstrates its effectiveness, comparing an unrestricted attack path with a mit-

igated scenario, showing how targeted defenses can impact cost and success rates. The

results highlight how removing specific attack actions can significantly impact both costs

and strategy effectiveness, demonstrating how ADTViewer advances theoretical security

modeling into practical intrusion analysis while supporting strategic decision-making in

cybersecurity.

x



Chapter 1

Introduction

1.1 Importance of Cybersecurity

In an era where digitalization is deeply embedded in all aspects of society, cybersecurity

plays an important role in protecting sensitive information, ensuring system integrity,

and maintaining operational resilience. The increasing reliance on interconnected sys-

tems, cloud services, and artificial intelligence has expanded both the attack surface

and the complexity of potential threats. Organizations, governments, and individuals

face an ever-evolving threat landscape, where cyber attacks can lead to financial losses,

operational disruptions, and risks to data confidentiality.

To counter these threats, cybersecurity strategies must evolve beyond traditional

defenses, integrating proactive risk assessment, real-time monitoring, and automated

response mechanisms. Effective security frameworks should not only detect and prevent

cyber attacks, but also provide structured methodologies to analyze vulnerabilities and

anticipate future threats.

1



CHAPTER 1. INTRODUCTION 2

1.2 Challenges in Intrusion Response and Attack Tree

Analysis

Intrusion response is a fundamental aspect of cybersecurity, aimed at detecting, miti-

gating, and preventing security incidents in real time. As cyber threats become more

sophisticated, organizations must adopt structured methodologies to assess risks, antic-

ipate attacker behavior, and deploy effective countermeasures.

An effective way to approach intrusion response can be achieved through Attack

Trees (ATs) and their extension, Attack-Defense Trees (ADTs). Attack trees provide a

hierarchical representation of how an attacker might attempt to compromise a system,

while attack-defense trees extend this model by incorporating defensive actions that can

mitigate or neutralize threats. By systematically analyzing attack paths and potential

countermeasures, ADTs serve as a foundation for intrusion response planning, enabling

security teams to model, evaluate, and optimize response strategies against evolving

cyber threats.

Despite their effectiveness, attack trees present significant challenges when applied

in practical cybersecurity contexts. The complexity of modern digital infrastructures

leads to attack trees of increasing size and complexity, making manual analysis inefficient

and error-prone. Traditional methods often rely on static conditions, not taking into

account the dynamic nature of cyber attacks, where attackers adapt their strategies in

response to implemented defenses.

1.2.1 Limitations of Existing Solutions

Several existing solutions for attack tree analysis present significant limitations that

prevent their adoption in cybersecurity operations. ADTool, for instance, offers a static

visualization of attack trees, which does not allow users to dynamically explore attack

paths or interactively analyze mitigation strategies. PRISM-Games, a probabilistic

model checker for security policies, provides powerful verification tools but requires users

to manually define attack-defense models using complex formal descriptions, making it
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a challenge to use effectively.

Another major limitation is the lack of integration with security monitoring plat-

forms as many of these tools function as standalone applications, without direct in-

tegration into Security Information and Event Management (SIEM) systems, thereby

reducing their ability to correlate modeled attack scenarios with real-time threat intel-

ligence data.

These limitations highlight the need for an accessible and interactive solution that

integrates attack tree analysis with modern cybersecurity frameworks, enabling security

professionals to visualize, interact with, and modify attack scenarios in real time.

1.2.2 The need for a GUI for attack tree analysis

To overcome the challenges associated with current solutions, there is a strong need for a

graphical, interactive tool that makes attack tree analysis more accessible and practical

for real-world cybersecurity applications. A dedicated Graphical User Interface (GUI)

would provide several key advantages in this context.

A well-designed GUI would significantly improve usability, allowing security analysts

to interact visually with attack trees, explore different attack-defense scenarios dynam-

ically, and analyze security risks. Unlike static tools, an interactive interface could

incorporate real-time policy computation, enabling users to automatically generate and

compare optimal attack-defense strategies based on different attack scenarios.

The integration of a GUI with SIEM and security monitoring systems, such as

OpenSearch Dashboards, would enhance real-time cybersecurity operations by allowing

security professionals to correlate detected threats with modeled attack trees, bridging

the gap between theoretical risk assessment and active intrusion response. In addition,

by including cost-benefit analysis tools, such a system could allow organizations to

evaluate the trade-offs between different mitigation strategies.



CHAPTER 1. INTRODUCTION 4

1.2.3 Motivation and Objectives of the Thesis

The motivation behind this research is to address the limitations of current attack

tree analysis tools by developing an interactive solution that enhances usability and

integration with modern security frameworks. Many existing platforms require users to

operate through command-line interfaces or complex scripting environments, making

them inaccessible to professionals without advanced technical expertise. Additionally,

these tools often lack real-time visualization support, making it difficult to interpret

and analyze security scenarios effectively.

This thesis introduces ADTViewer, an advanced GUI that enhances the usability

of attack tree analysis. The system is built on a modular architecture, integrating

technologies such as React, D3.js, OpenSearch, and Docker to ensure seamless and

responsive interaction. In addition, by incorporating the PANACEA framework, which

utilizes Timed Stochastic Games to generate optimal defense strategies, the tool allows

for automated synthesis of security policies based on dynamic attack scenarios.

1.3 Structure of the Thesis

The thesis begins by establishing the fundamental concepts in Chapter 2, where the

principles of attack trees and attack defense trees are introduced as essential tools for

cybersecurity risk assessment. The chapter explores their role in intrusion response sys-

tems, discusses existing attack tree analysis tools such as ADTool and PRISM-Games,

and introduces PANACEA, a framework that integrates timed stochastic games to op-

timize security policies. These theoretical foundations are crucial for understanding the

methodologies developed in later chapters.

In Chapter 3, the focus shifts to the system architecture of the ADTViewer plu-

gin, detailing its integration with OpenSearch Dashboards. The chapter examines

the modular front-end structure, built with React, and the backend implementation,

which facilitates seamless communication between PANACEA, OpenSearch, and Post-

greSQL databases. Additionally, the chapter discusses the containerized deployment
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using Docker, ensuring scalability and ease of integration into existing security infras-

tructures.

Building on this, Chapter 4 provides a comprehensive user guide, illustrating the

workflow of the ADTViewer plugin. It explains how users can load attack trees, com-

pute and visualize optimal attack-defense strategies, and modify security scenarios by

excluding specific actions. The chapter also presents the cost analysis and policy com-

parison functionalities, which enable security analysts to evaluate different mitigation

strategies and make informed decisions based on monetary and operational trade-offs.

In Chapter 5, the thesis demonstrates the effectiveness of the developed system

through a case study involving two distinct attack-defense scenarios. The first scenario

examines an unrestricted attack path, where the attacker follows an optimal strategy

without interference. The second scenario introduces a mitigation strategy, removing a

key attack step and analyzing its impact on the overall attack success rate and associated

costs. This chapter highlights how the ADTViewer plugin can be used to quantify the

impact of security interventions and improve decision-making in real-world cybersecurity

operations.

The thesis concludes by summarizing the contributions made, both theoretical and

practical. It discusses the limitations and challenges encountered during the research

and suggests future improvements, such as enhancing computational efficiency for large

attack trees, integrating machine learning techniques for predictive security analysis,

and developing adaptive security policies capable of dynamically responding to emerging

cyber threats.



Chapter 2

Background and Related Work

Cybersecurity is a field that continuously evolves to address new threats and vulner-

abilities. One of the methodologies used to analyze security risks is the concept of

Attack Trees (ATs), which provide a hierarchical representation of attack strategies and

facilitate a systematic security assessment. This chapter provides an overview of attack

trees and their extensions, particularly Attack Defense Trees (ADTs). Additionally, we

review existing tools for attack tree analysis and explore the PANACEA framework,

which leverages PRISM-Games for optimizing security strategies.

2.1 Attack Trees

Attack Trees are a structured way to model the security of systems by hierarchically

representing different attack strategies. The name was first mentioned by Salter et al.

in 1998 [SSSW98] but is often only attributed to Schneier [Sch99]. By breaking down

complex attack strategies into smaller components, ATs help identify vulnerabilities,

assess risks, plan mitigation, and improve security.

2.1.1 Structure of Attack Tree

In the attack tree formalism, the main goal of an attacker is depicted as the root node

of a tree, the goal is then disjunctively or conjunctively refined into sub-goals. The

6
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refinement is repeated recursively, creating a tree-like structure until the reached node

represents basic actions.

Figure 2.1: Example of an Attack Tree from [Wei91]. Obtaining administrator privileges
on a UNIX system.

The components of an attack tree, as seen in Figure 2.1 are:

• Root Node: Represents the main goal of the attacker.

• Intermediate Nodes: Denote the different strategies or paths that an attacker

may take. They may require the accomplishment of several preceding steps.

• Leaf Nodes: Represent the specific steps or conditions necessary for an attacker

to reach their objective or an intermediate goal.

• Edges: The connections between nodes, indicating the flow and dependency of

actions.

• Conjunctive refinement (AND Gate): All sub-goals linked by an AND gate

must be completed to achieve the parent goal.

• Disjunctive refinement (OR Gate): Any one of the sub-goals linked by an OR

gate is sufficient to fulfill the parent goal.
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2.1.2 Applications in Cybersecurity

Attack trees can be used to analyze security threats by systematically breaking down

attack strategies. Their structured approach has led to various cybersecurity applica-

tions, such as risk assessment for critical infrastructure security and security analysis of

IoT devices. In the case of IoT security, attack trees are used to evaluate vulnerabilities

in connected devices [XAH+16]. Another relevant example is the assessment of vulner-

abilities in healthcare devices, where attack trees have been used to evaluate different

threat scenarios and design appropriate countermeasures[SSH+18].

In conclusion, the structured methodology of attack trees enables organizations to

visualize attack pathways, assess risks effectively, and implement well-informed coun-

termeasures, ultimately strengthening system security [NFW17].

2.1.3 Attack Defense Trees

Attack Defense Trees (ADTs) are an extension of traditional attack trees that in-

corporate defensive actions to model the interplay between attackers and defenders

[KMRS14]. While attack trees focus exclusively on the strategies available to an at-

tacker, ADTs introduce defense nodes that represent security measures designed to

mitigate or prevent attacks. This approach enables the identification of optimal defense

strategies and minimization of security risks across various domains, such as cyber-

physical systems and cloud security. As illustrated in Figure 2.2, ADTs provide a

structured representation of attack scenarios by integrating both offensive and defen-

sive actions, allowing for a comprehensive security analysis.

ADTs have been widely applied in cloud security, where they help model potential cyber

threats and determine effective countermeasures. For example, [KMRS12] demonstrated

how ADTs can be used to analyze multi-layered cloud security models, allowing for a

systematic evaluation of vulnerabilities and defensive solutions. Similarly, in critical

infrastructure security, ADTs have been used to model cyber threats against essential

systems like power grids and financial institutions [BFP06].

ADTs have also been integrated with timed automata and Bayesian networks to
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Figure 2.2: Example of an Attack Defense Tree representing a server theft [BFP06].

enhance predictive capabilities. Timed automata help model time-dependent attack

and defense strategies, crucial in dynamic environments [GHL+16], meanwhile, Bayesian

networks enable probabilistic risk assessment, allowing to evaluate the likelihood and

impact of different attack scenarios [RRI+20].

2.2 Existing Tools for Attack Tree analysis

The increasing importance of attack trees and attack defense trees in cybersecurity has

led to the development of various tools that aid in their modeling, analysis, and risk

assessment. These tools provide functionalities such as graphical modeling, probabilistic

risk assessment, and game-theoretic analysis.

2.2.1 ADTool

ADTool1 is an open-source software developed at the University of Luxembourg for

graphical modeling and quantitative analysis of security scenarios using ADTs. It pro-

vides an intuitive GUI for model creation, modification, and evaluation, ensuring com-
1https://satoss.uni.lu/members/piotr/adtool/

https://satoss.uni.lu/members/piotr/adtool/
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pliance with the ADTree graphical language. The tool employs an improved version

of Walker’s algorithm [II89] for optimized tree layouts and displays the corresponding

attack-defense term in real time. It supports advanced model manipulation features

such as folding, expanding, zooming, and hiding tree sections, making it useful for

analyzing large models and facilitating presentations. ADTool includes a bottom-up

evaluation algorithm for various attributes (e.g., cost, probability, time), supporting

attacker, defender, and combined perspectives. An overview table ensures consistency,

particularly in large models. Having been extensively tested, ADTool efficiently handles

thousands of nodes, with computations performed instantly [KKMS13].

2.2.2 PRISM and PRISM-Games

PRISM2 is a well-known probabilistic model checker widely used for analyzing stochastic

models, including Markov Decision Processes [KNP11]. PRISM-Games extends PRISM

to handle multi-player stochastic games, making it particularly useful for cybersecurity

applications where attackers and defenders interact strategically [FKN+20]. Key fea-

tures of PRISM and PRISM-Games:

• Formal modeling: Enables the representation of attack-defense interactions as

stochastic games, allowing security analysts to model adversarial scenarios effec-

tively.

• Automated verification: Performs quantitative security analysis, calculating

attack success probabilities and associated costs.

• Optimal strategy synthesis: Supports the computation of optimal attack and

defense strategies, helping organizations design cost-effective security measures.

• Multi-objective evaluation: Allows users to analyze trade-offs between attack

probability, cost, and system resilience.
2https://www.prismmodelchecker.org/

https://www.prismmodelchecker.org/
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PRISM and PRISM-Games have been successfully applied in critical infrastructure

security, IoT protection, and cloud security [BCG18], providing a formal verification

framework for security risk assessment.

2.3 PANACEA: Attack Tree analysis with PRISM-Games

PANACEA [Mar23] is a framework designed to enhance Intrusion Response Systems by

automating the generation of optimal defense policies against cyber threats. PANACEA

addresses the limitations of traditional IRS approaches by combining ADTs with Timed

Stochastic Games, allowing defenders to model cyberattacks as structured decision-

making problems.

Using PRISM-Games, the framework transforms an attack-defense model into a

game-theoretic representation, where both attackers and defenders make strategic choices.

By applying this approach, PANACEA systematically evaluates attack success proba-

bilities and identifies cost-effective countermeasures, improving system security while

optimizing resource allocation.

2.3.1 XML Attack Tree processing

A key step in PANACEA’s workflow is processing ADTs, which serve as the input

representation of the attack scenarios. The attack tree data, stored in XML format

(compatible with ADTool), is processed to extract relevant attack paths, assign cost

and execution time attributes to each attack step, and convert the structured attack-

defense scenario into a Timed Stochastic Game.

This structured transformation allows PANACEA to incorporate time constraints

and probabilistic success rates, enabling a dynamic evaluation of threats, where attack

and defense actions have associated probabilities, costs, and response times, unlike

traditional static analyses.
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2.3.2 PRISM-Games and Optimal Policies

Once the attack-defense model is transformed into a formal game representation,

PANACEA uses PRISM-Games for probabilistic verification and strategy synthesis.

By analyzing attack scenarios, PRISM-Games computes the probability of an attack

succeeding under different security policies and identifies the optimal defensive actions

to minimize risk while considering cost and feasibility.

The result, illustrated in Figure 2.3, is a defense policy that determines the best

sequence of actions based on system state and observed attacker behavior. These policies

account for timing constraints and resource availability, ensuring that countermeasures

are both effective and operationally feasible.

Figure 2.3: Example of an optimal strategy computed by PANACEA not including
time.

2.4 Intrusion Response Systems

Intrusion Response Systems (IRS) are important security components designed to de-

tect, analyze, and mitigate intrusions in real time. These systems monitor network

traffic, system logs, and behavioral patterns to identify suspicious activities and initiate

appropriate countermeasures, such as blocking connections or alerting administrators.

Early IRS relied mainly on rule-based detection methods, which proved inadequate to
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address novel or evolving threats [SSEJJD12]. In contrast, modern IRS leverage ad-

vanced technologies such as machine learning and artificial intelligence to detect anoma-

lies and respond to sophisticated cyberattacks in real time [AIA21].

A key challenge in IRS development is to balance detection accuracy with response

speed. High false positive rates can flood system administrators with alerts, leading

to response fatigue, while excessive false negatives can allow critical security breaches

to go undetected [AMZZ+17]. To address these issues, current research focuses on

integrating adaptive learning mechanisms and automated decision making processes

into IRS frameworks, enabling them to dynamically adjust to emerging threats and

improve overall resilience [GKM23].

2.5 Security Information and Event Management (SIEM)

Solutions

In modern cybersecurity architecture, Security Information and Event Management

(SIEM) systems play an important role in log management, threat detection, and in-

cident response. These solutions collect security-related data from various sources and

provide organizations with centralized visibility and real-time analysis to efficiently de-

tect and respond to security threats [PR19]. There are several SIEM solutions available

on the market, ranging from commercial platforms such as Splunk or Microsoft Sentinel

to open source alternatives such as Wazuh and the Elastic Stack [TMA+22].

Among the various SIEM options, Wazuh3 has emerged as an open source alter-

native that offers comprehensive capabilities for threat detection, log analysis, and file

integrity monitoring. A key advantage of Wazuh is its ability to integrate seamlessly

with OpenSearch, allowing the storage and visualization of security data effectively. As

illustrated in Figure 2.4, this integration enhances the ability to analyze security logs,

detect anomalies, and respond to potential threats in a structured and scalable way

[TRP+24].
3https://documentation.wazuh.com/current/index.html

https://documentation.wazuh.com/current/index.html
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Figure 2.4: OpenSearch integration with Wazuh from the Wazuh documentation 3.

2.6 Towards a Graphical Interface for Attack Tree

Analysis

The methodologies discussed in this chapter highlight the importance of structured

threat modeling in cybersecurity. Attack trees and attack defense trees provide a sys-

tematic way to evaluate security risks and plan defensive measures. The reviewed

tools, including ADTool and PRISM-Games, demonstrate the potential of automated

analysis in optimizing security strategies. Moreover, the PANACEA framework shows

how game-theoretic approaches can enhance Intrusion Response Systems by integrating

probabilistic verification and strategic decision making.

However, accessibility remains a challenge, as many tools require command-line

usage or scripting. To address this, the development of a user-friendly graphical interface

is a necessity. The next steps in this research involve the design and implementation of

such a graphical interface with the aim of bridging the gap between theoretical security

analysis and practical applications.



Chapter 3

System Architecture

In this chapter, we present the integration of OpenSearch and OpenSearch Dashboards

within the project, focusing on their roles in data visualization and security monitoring.

We explore the development of a custom OpenSearch Dashboards plugin designed to

provide an interactive GUI for the PANACEA framework, detailing its architecture and

implementation. Additionally, we describe the containerized system architecture utiliz-

ing Docker and Docker Compose, explaining how various components interact within a

multi-container environment. Finally, we examine the modular front-end architecture

of the plugin, highlighting key components and their functionalities in managing and

visualizing security policies and attack defense trees.

3.1 OpenSearch and OpenSearch Dashboards

OpenSerach1 is a distributed search and analytics engine derived from the open source

Elasticsearch2 project and is widely used for log analytics, security monitoring and data

visualization.

One of OpenSearch’s main componets is OpenSearch Dashboards, a visualization

tool that allows users to explore and analyze data stored in OpenSearch indices, pro-

viding a web-based interface for creating dashboards, running queries, and performing
1https://opensearch.org/docs/latest/about/
2https://www.elastic.co/docs
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security analytics. It also includes built-in security features, such as role-based access

control (RBAC), anomaly detection, and alerting. As stated in section 2.5 OpenSearch

is fully integrable with Wazuh, allowing admins to identify trends, detect anomalies,

and mitigate threats in real time.

3.1.1 Developing Plugins for OpenSearch Dashboards

OpenSearch Dashboards supports a flexible plugin architecture that allows developers to

extend its functionalities by introducing custom visualization components, integrating

with third-party security tools, or automating security workflows. A high-level overview

of the OpenSearch Dashboards plugin architecture is shown in Figure 3.1.

Figure 3.1: OpenSearch Dashboards plugin architecture [Pro22].

During this project, a custom plugin was developed to provide a graphical interface

(GUI) for the PANACEA framework, enabling interactive visualization and manage-

ment of attack defense trees. The plugin communicates with the PANACEA back end,

retrieving security policies and attack tree data to display them in a useful format. The

development of an OpenSearch Dashboards plugin involves the following steps:

• Setting up the development environment, including the installation of nec-

essary dependencies and the OpenSearch Dashboard plugin framework.

• Defining the plugin architecture, which follows a modular design consisting

of front-end components built with React and back-end services that manage API
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integrations.

• Integrating with the PANACEA back end, exposing its core functionalities

through custom APIs to facilitate interaction with the plugin.

3.2 Containerized System Architecture using Docker

One of the primary reasons for adopting Docker3 in this project is that OpenSearch

Dashboards provides an official4 Docker image specifically for plugin development, sim-

plifying the setup for testing and integrating custom plugins. Additional advantages

of using Docker include its efficient resource utilization and rapid deployment capa-

bilities. Additionally, Docker Compose offers a structured way to orchestrate multiple

containers, facilitating communication between them, and allowing efficient network

configuration.

3.2.1 Overview of the Multi-Container Setup

The system is structured as a multi-container architecture using Docker Compose for

orchestration. The official OpenSearch Dashboards Docker Compose configuration was

used as a foundation, extended to integrate additional containers required for system

functionality. All containers are deployed within a shared network, ensuring efficient

communication between services. As illustrated in Figure 3.2 the architecture consists

of the following key components:

• OpenSearch Node: This container runs OpenSearch, serving as the primary

search and indexing engine. It exposes a REST API that enables interaction with

indexed data and facilitates query execution.

• OpenSearch Dashborad Development Environment: This container pro-

vides a pre-configured development environment for OpenSearch Dashboards, al-
3https://www.docker.com/
4https://github.com/opensearch-project/OpenSearch-Dashboards

https://www.docker.com/
https://github.com/opensearch-project/OpenSearch-Dashboards
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lowing developers to build, test, and debug custom plugins without requiring a

full OpenSearch installation.

• PostgreSQL Database: This container acts as the structured data repository

for the system, storing information such as attack tree definitions and computed

policies.

• PANACEA Application: This container hosts a streamlined version of

PANACEA along with its dependencies. It is responsible for processing security

policies, analyzing attack defense trees, and interacting with OpenSearch Dash-

boards and the PostgreSQL database.

User / Client

OpenSearch Cluster

OpenSearch Dashboards

Application Layer

Browser

OpenSearch Node

OSD Plugin (Frontend)

Panacea Server

Database Server
PostgreSQL Database

Port 5601 Port 9200

Port 5002

Port 5003

Port 5003

Port 5432

Figure 3.2: Deployment diagram for the multi-container setup.

3.3 Plugin Architecture

An OpenSearch Dashboard plugin follows the typical architecture of modern web ap-

plications, where the front end handles the user interface (UI) and interactions, and the

back end manages server-side logic and the plugin’s interaction with OpenSearch. The

primary responsibilities of the front end, built using TypeScript and React, include the

following:
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• Creating pages and UI components.

• Defining routes to enable navigation within the plugin.

• API calls to the back end to retrieve and send data.

The back end of the plugin runs on the OpenSearch server side, allowing it to:

• Register REST API routes to receive requests from the front end.

• Access OpenSearch log data.

• Manage authentication logic and access plugin configuration settings.

3.4 Modular Front-end architecture

The ADTViewer5 plugin for the PANACEA GUI is designed with a modular front-

end architecture, ensuring ease of maintenance and scalability. The plugin consists of a

main component which serves as the entrypoint, and several UI components that handle

different functionalities. In the main component, data is fetched by calling the APIs

defined in the back end, and the retrieved data is passed as props to other components

as needed.

3.4.1 Main Component

The main component is responsible for organizing the various panels that make up the

plugin’s functionalities. Upon loading, it retrieves data from the database by making

REST API calls defined in the back end that interact with the database server which

exposes CRUD operations. Once the data is loaded, the other components (panels)

are rendered and data is passed as props. To allow seamless interaction between the

components and facilitate data sharing, a component serving as a context provider

wraps all the others, ensuring that updates propagate efficiently across the interface.
5Repository available at: https://github.com/Francsco99/adt_viewer

https://github.com/Francsco99/adt_viewer
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The layout of the main component is fully configurable and structured to opti-

mize workflow efficiency. The class diagram 3.3 illustrates the internal structure of the

main component, highlighting the relationships between the core classes. The class

AdtViewerApp serves as the central hub, initializing all other components. It main-

tains state variables such as treeData, states, selectedPolicy, and selectedTree,

which are used to manage the data flow. The TreeContextProvider facilitates shared

state management, ensuring consistent updates across the interface. The Toolbar

component provides functionalities for uploading files and managing policies. The

TreeStateNavigator, NodeInfo, and StatesVisualizer components are responsible

for rendering and interacting with tree data. The ActionsManager handles user interac-

tions related to policy management, while the CostChart and PolicyComparisonChart

components generate visual analytics for policy evaluation.
AdtViewerApp

basename: string
notifications: CoreStart["notifications"]
http: CoreStart["http"]
navigation: NavigationPublicPluginStart
treeData: any
states: array
currentStateIndex: number
policiesList: array
selectedPolicy: object | null
treesList: array
selectedTree: object | null
isPolicyPopoverOpen: boolean
isTreePopoverOpen: boolean
listsLoaded: boolean
loadPolicy(policyId: number)
loadTree(treeId: number)
refreshPoliciesList()
refreshTreesList()

Toolbar
notifications: CoreStart["notifications"]
http: CoreStart["http"]
currentStateIndex: number
states: array
refreshPoliciesList()
refreshTreesList()

TreeContextProvider
selectedPolicy: object | null
selectedTree: object | null

TreeStateNavigator
treeData: any

NodeInfo
treeData: any

StatesVisualizer
treeData: any
states : any

ActionsManager
treeData: any
notifications: CoreStart["notifications"]
http: CoreStart["http"]
refreshPoliciesList()
refreshTreesList()

CostChart
treeData: any
states : any

PolicyComparisonChart
notifications: CoreStart["notifications"]
http: CoreStart["http"]
treeData: any
policiesList : array

Figure 3.3: Class diagram for main component.

The sequence diagram 3.4 shows the interaction between the front end and back end.

It begins when the user selects a policy or a tree, triggering an API request defined

on the server side of the plugin. The back end processes this request by retrieving the

corresponding data from the PANACEA server’s database and returning the policy or

tree to the front end. This interaction is supported through a Flask-based API run-

ning on the PANACEA server, which is responsible for handling requests and managing

the database. The Flask application uses SQLAlchemy to interface with a PostgreSQL

database and exposes multiple API endpoints to access trees, policies, and related data

structures. Once the backend receives the requested information, it forwards the re-
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sponse to the front end, where the TreeContextProvider updates the global state.

This ensures that all relevant components, such as TreeStateNavigator, NodeInfo,

and StatesVisualizer, are synchronized and reflect the newly loaded data in the user

interface.

User

User

AdtViewerApp

AdtViewerApp

http

http

Backend

Backend

TreeContextProvider

TreeContextProvider

TreeStateNavigator

TreeStateNavigator

NodeInfo

NodeInfo

StatesVisualizer

StatesVisualizer

notifications

notifications

1 Selects a policy or tree

2 GET /api/adt_viewer/load_{policyId | treeId}

3 Retrieve policy/tree from the database

4 Return policy/tree data

5 Data received

6 Update global state with new data

7 Update state navigation

8 Update node information

9 Update state visualization

1 0 Display success toast

1 1 "Policy/Tree successfully loaded"

Figure 3.4: Sequence diagram of main component operations.

3.4.2 TreeContextProvider Component

The TreeContextProvider component’s primary function is to manage and share a

global state across the other UI components, ensuring seamless communication within

the application. Unlike other components, TreeContextProvider does not render any

UI elements; instead it acts as a centralized store for essential information such as se-

lected and active nodes, policies, and trees. It also allows the other UI components to

access and edit shared data without requiring a direct relationship, improving modu-

larity and maintainability.

This architecture is crucial to enable dynamic updates across the UI, ensuring that

any modification (such as selecting a node or changing a state) made in one panel is

immediately reflected across the entire interface.

3.4.3 TreeVisualizer and TreeStateNavigator Components

The TreeVisualizer and TreeStateNavigator components work together to manage

and display the attack defense tree, also allowing the user to cycle through its different



CHAPTER 3. SYSTEM ARCHITECTURE 22

states.

The TreeStateNavigator functions as a control interface, allowing users to nav-

igate different policy states while maintaining synchronization with the global state.

Instead of directly managing the visualization, it delegates that responsibility to the

TreeVisualizer, thus ensuring a clear separation between control logic and graphi-

cal representation. On the other hand, the TreeVisualizer is responsible for render-

ing the hierarchical attack tree structure, using D3.js6 to handle layout calculations,

node positioning, and interactive elements. All necessary data is retrieved from the

TreeContextProvider, ensuring that changes (such as selecting a node or switching

states) are immediately reflected across the UI.

3.4.3.1 Data Flow and State Management

As mentioned in Section 3.4.2, the TreeContextProvider ensures that TreeStateNavigator

and TreeVisualizer remain loosely coupled while maintaining a consistent represen-

tation of the system state. The sequence diagram in Figure 3.5 details the interaction

between the user and the component.

Interaction between TreeStateNavigator and TreeVisualizer

User

User

TreeStateNavigator

TreeStateNavigator

TreeContextProvider

TreeContextProvider

TreeVisualizer

TreeVisualizer

D3

D3

Selects a state or interacts with the UI

Updates selectedStateID

Notifies about the state change

Retrieves updated state data

Updates tree layout based on new state

Renders updated tree visualization

Requests to download the tree (SVG)

Retrieves SVG element

Returns serialized SVG

Triggers file download

Figure 3.5: Sequence diagram for state selection and visualization updates.

6https://d3js.org/

https://d3js.org/
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3.4.4 StatesVisualizer Component

The StatesVisualizer component is responsible for displaying and managing the dif-

ferent states of the policy currently selected. This panel provides users with an overview

of the tree’s states, allowing them to analyze how each state evolves based on the ap-

plied policy. This visualization helps users better understand how the policy affects the

system and allows them to determine the associated cost at each state transition. The

class diagram in Figure 3.6 illustrates the internal structure of the component and its

dependencies.

StatesVisualizer

states: State[]
treeData: TreeData | null
handleElementClick(label: string): void
extractActiveNodes(stateData: Record<string, number | boolean>): ActiveNode[]
calculateCumulativeCosts(stateIndex: number): CostData

TreeContext

selectedStateID: number
selectedNodesLabel: string[]
setSelectedStateID(id: number): void
setSelectedNodesLabel(labels: string[]): void
setActiveNodes(nodes: ActiveNode[]): void

FallbackMessage

title: string
message: string

State

state_id: number
optimal_action: string | null
state_data: Record<string, number | boolean>

TreeData

nodes: Node[]
edges: Edge[]

Node

id: number
label: string
name: string
action: string | null
cost: number | null
time: number | null
role: string | null

Edge

id_source: number
id_target: number

ActiveNode

label: string
active: number

CostData

attackerObjective: number
defenderObjective: number

Figure 3.6: Class diagram for StatesVisualizer component.

3.4.5 ActionsManager Component

The ActionsManager panel allows user to interact with PANACEA by requesting a

new policy computation for the tree currently selected. This panel displays all available

actions and allows users to flag certain ones, excluding them from the policy computa-

tion. In that way, any flagged actions, along with its entire subtree, are omitted from

further evaluation. The panel also provides sorting and filtering options, allowing users

to refine the displayed actions based on their attributes, such as role, monetary cost,

and time cost.
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Once the desired actions have been flagged, the user can trigger the export process,

which generates an updated representation of the tree structure and communicates with

PANACEA to perform policy recalculations.

3.4.5.1 Export Configuration Process

When a user clicks the Export Configuration button, the system generates a JSON file

representing the tree structure. Within this representation, flagged actions are marked

as hidden, ensuring that they are ignored in the following policy computation. This

JSON file is then sent to the PANACEA server, where it is processed and converted

into the corresponding XML format required for PRISM-Games. After the new policy

is calculated, PANACEA returns the updated results to the front end, where they are

displayed to the user. A sequence diagram for this interaction is shown in Figure 3.7

User

User

ActionsManager

ActionsManager

exportData

exportData

loadData

loadData

HTTP

HTTP

Clicks "Export configuration" button

Generate timestamped fi le name (if empty)

Update treeData with flagged actions

Set isUploading = true (Show spinner)

Call exportData(http, notifications, updatedTreeData)

Send export request

Respond with tree_json_id, policy_json_id

Return response data

Call loadData with IDs

Fetch exported data

Respond with data

Notify completion

Set isUploading = false (Hide spinner)

Figure 3.7: Sequence diagram showing the Export Configuration button interaction.
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3.4.6 CostChart and PolicyComparisonChart Components

The CostChart and PolicyComparisonChart components are responsible for visualizing

cumulative costs and comparing different policies within the system.

The CostChart component illustrates the evolution of cumulative costs over time,

distinguishing between costs attributed to the attacker and the defender. The visual-

ization is based on the sum of monetary and time costs associated with the optimal

actions selected in each state. Data updates occur whenever a new state is selected,

dynamically updating the graph to reflect values up to the current simulation point.

This process is illustrated in the sequence diagram 3.8:

User

User

CostChart

CostChart

states

states

treeData

treeData

calculateCumulativeCosts

calculateCumulativeCosts

Changes selectedStateID

Call calculateCumulativeCosts(stateIndex)

Retrieve state information (optimal_action)

Return optimal_action

Find action details in treeData

Return action cost, time, and role

alt [Role == "Attacker "]

Add cost & time to cumulativeAttackerCost/Time

[Role == "Defender "]
Add cost & time to cumulativeDefenderCost/Time

Compute attackerObjective & defenderObjective

Return computed values

Update chart with new values

Figure 3.8: Sequence diagram for cumulative cost calculation.

As shown in the diagram, the CostChart receives as input the policy states computed

by PANACEA and iterates through them to determine the cumulative cost for both

the attacker and the defender based on the selected actions. The resulting data is then

graphically represented, distinguishing between the already traversed and future parts

of the policy.

The PolicyComparisonChart component allows users to compare different policies
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generated for the same tree, displaying their total monetary and time costs. The data

update process involves retrieving information for each available policy in the database,

computing the total cost and time required for its execution. The process is illustrated

in the following sequence diagram:

User

User

PolicyComparisonChart

PolicyComparisonChart

useEffect

useEffect

API (http)

API (http)

TreeData

TreeData

State (policyMetrics)

State (policyMetrics)

Loads component

useEffect triggered (Dependency: treeData, selectedPolicyIds)

Fetch policy data (for each policy)

Return policy states

loop [For each policy]

Find action details in treeData

Return action cost, time, and role

Compute totalCost & totalTime

Compute objective function

Update policyMetrics state

Re-render chart with new data

Figure 3.9: Sequence diagram for policy comparison.

As shown in the diagram, when a user selects one or more policies for comparison, the

system queries the back end to retrieve the corresponding data. Once received, the

key metrics of each policy (cost, time, and objective function value) are computed and

displayed in the graph.



Chapter 4

ADTViewer Plugin User Guide

4.1 User Workflow Overview

This chapter provides a structured representation of how users interact with the plugin,

from loading an attack tree to analyzing and modifying policies. This workflow is

divided into multiple stages, each linked to specific functionalities of the graphical user

interface (GUI). By following this process, users can fully utilize the system to explore

attack trees, compute optimal policies, and evaluate various attack-defense strategies.

The general workflow consists of the following steps:

• Loading an Attack Tree (Section 4.2) Users begin by uploading an XML file con-

taining an attack tree in a format compatible with ADTool. The PANACEA

server processes the XML, converting it into a JSON structure suitable for visu-

alization. The attack tree is displayed in the Tree Visualizer panel, where users

can explore its structure interactively.

• Computing an Optimal Policy (Sections 4.2, 4.4) The PANACEA script processes

the attack tree to generate a .prism file, which is used to compute an optimal

policy using PRISM Games. The resulting policy is returned as a JSON file

containing a sequence of states and optimal actions. Users can navigate through

these policy states using the States Visualizer panel to analyze how the attack-

27
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defense dynamics evolve.

• Modifying the Attack Tree and Recomputing Policies (Section 4.5) Using the

Actions Manager panel, users can exclude specific attack actions, effectively

modifying the attack tree structure. The modified attack tree is exported, and a

new policy is computed based on the updated configuration. The Tree Visualizer

panel is updated, highlighting excluded portions of the tree in gray, while the new

policy is loaded into the States Visualizer.

• Analyzing Cost and Comparing Policies (Sections 4.6, 4.7) The Cost Chart panel

provides a breakdown of the monetary and temporal costs associated with the

policy execution. The Policy Comparison Chart panel allows users to compare

multiple policies, highlighting cost differences and trade-offs between different

strategies.

This structured workflow ensures a seamless and efficient user experience, enabling

users to explore, modify, and evaluate attack-defense strategies with precision.

4.2 Loading an Attack Tree from an XML File

The Toolbar provides various commands for managing the plugin’s functionalities,

including the option to load an XML file. The process begins by importing an XML file

that contains an attack tree in a format compatible with ADTool. This file format is

mandatory, as PANACEA’s main script processes it to generate an input file suitable for

PRISM Games. Figure 4.1 illustrates the Toolbar with the XML file loading button.

Figure 4.1: Toolbar with the XML file loading button.

The XML file follows this structure:
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<adtree>
<node refinement="disjunctive">

<label>Data Exfiltration</label>
<comment>

Type: Goal
Role: Attacker

</comment>
<node refinement="disjunctive">

<label>exfiltrateData</label>
<comment>Type: Action</comment>

</node>
</node>

</adtree>

The attack tree structure consists of two main types of nodes:

• Action Nodes represent specific steps that an attacker or defender can take,

characterized by attributes such as cost, time, and role.

• Attribute Nodes define conditions that must be met to achieve a particular goal

or perform an action.

Each node has a refinement type, which determines how its child nodes are combined:

• Disjunctive (refinement="disjunctive"): At least one of the child nodes must

be completed to satisfy the parent node.

• Conjunctive (refinement="conjunctive"): All child nodes must be completed

for the parent node to be satisfied.

Once received, the PANACEA server processes the XML file and the first operation

is parsing it into a JSON file with the following structure:

{
"nodes": [],
"edges": []

}
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This conversion is necessary because, as explained in Section 3.4.3, the visual rendering

of the tree is handled by the D3.js library, particularly the d3.tree()1 function, which

accepts a list of nodes and edges as input.

The second step involves invoking the main script of PANACEA, which processes

the XML file and generates a .prism file, passing it directly to PRISM Games. PRISM

Games produces a policy as a list of states connected by optimal actions, represented in

textual format. The PANACEA server parses this file to generate a JSON representation

once again, where each state has a unique ID. Each state is a map where the keys

represent node labels, and the values are 0, 1, 2, true, false:

• 0, 1 and 2 refer to Attribute nodes, indicating their state in a specific policy state:

0 if inactive, 1 if active, 2 if fixed.

• true and false refer to Action nodes, with true meaning the action is active and

false meaning it is inactive.

These different node states are visually represented in the tree rendering.

The third step involves the interaction between the PANACEA server and the Post-

greSQL database, where the following files are stored:

• The original XML attack tree file is saved in one table.

• The corresponding JSON tree file is stored in another table.

• The JSON policy file is saved in a separate table.

• A mapping table links the XML file to the JSON tree file, ensuring retrieval of

the original XML file from any JSON representation.

The structure of the database, including the relationships between the tables, is illus-

trated in Figure 4.2.

Once stored in the database, the PANACEA server sends a success response to the

plugin, containing the newly generated IDs of the policy and tree JSON files. The
1https://d3js.org/d3-hierarchy/tree

https://d3js.org/d3-hierarchy/tree
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Figure 4.2: Entity-Relationship diagram of the database.

plugin then makes an API call to retrieve and load these files. The sequence diagram

in Figure 4.3 illustrates the interaction process.

User

User

EuiFilePicker

EuiFilePicker

Toolbar

Toolbar

uploadFile()

uploadFile()

Flask Server

Flask Server

PostgreSQL DB

PostgreSQL DB

Selects XML fi le

Trigger onChange(files)

Close modal

handleFileUploading(file)

uploadFile(http, notifications, file)

POST /receive_xml with XML file

Read fi le and validate extension

parse_tree(XML) → JSON Tree

panacea(XML) → TXT

extract_policy(TXT) → JSON Policy

Save TreeXML

Save TreeJSON

Save Policy

Save TreePolicy relationship

Return {tree_json_id, policy_json_id}

Return saved data IDs

Load data from DB

Show success notification

Figure 4.3: Sequence diagram illustrating the interaction between the plugin and the
server.
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If everything completes successfully, the two files are correctly loaded, and the Tool-

bar updates to display the names of the recently loaded files, as shown by Figure 4.4

Figure 4.4: Updated Toolbar displaying the loaded files.

4.3 Tree Visualizer Panel

The Tree Visualizer panel provides a graphical representation of attack trees, allowing

users to explore and analyze different attack scenarios interactively. This visualization is

helpful in understanding the relationships between different attack steps and the defen-

sive measures that can be taken to mitigate them. Through an intuitive interface, users

can navigate the tree structure, select specific nodes, and access detailed information

about each attack component.

4.3.1 Attack Tree Representation

The attack tree visualization is implemented using the d3.tree() function from the

D3.js library. This function constructs a hierarchical tree structure based on the input

JSON data derived from the XML attack tree as explained in Section 4.2. Nodes in

the tree are represented as ellipses or rectangles, depending on their roles, and edges

illustrate the relationships between them. This representation, illustrated in Figure 4.5,

is useful to explore the attack tree interactively and enables users to distinguish different

types of nodes based on their representation. The visualization supports actions such

as dragging, zooming, and panning, allowing users to smoothly explore large attack

trees. Nodes can be selected individually or in groups, and selected nodes are visually

highlighted to distinguish them from the rest of the tree.
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Figure 4.5: Graphical representation of the attack tree using d3.tree(). Red ellipses
are Action (dashed border) or Attributes (full border) nodes, while green rectangles
represent Defender nodes.

4.3.2 Selecting Nodes for Additional Information

The visualization allows users to interact with the tree by clicking on one or more nodes

and highlighting them. Selected nodes can be used to retrieve additional information

relevant to the attack scenario, such as cost, time, or associated actions. These details

are displayed in a separate panel called Node Info, which dynamically updates based

on the selected nodes. As shown in Figure 4.6, this panel provides a structured overview

of node attributes, including its role (Attacker/Defender), type, associated actions, and

additional properties. The ability to inspect multiple nodes simultaneously enhances

the analytical capabilities of the visualization.

By toggling specific options within the Node Info panel, users can choose to display

either only the selected nodes or all nodes in the tree. In addition, the panel supports

sorting, allowing users to filter the information displayed.
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Figure 4.6: Node Info panel displaying detailed information about multiple selected
nodes.

4.4 States Visualizer Panel

The States Visualizer panel allows users to interactively view and explore the states

of the policy generated by PANACEA and subsequently loaded through the selector

in the Toolbar. This panel represents each policy state and illustrates how they are

connected through the optimal action, which enables the transition from one state

to another. Additionally, it displays information about the cumulative attacker and

defender costs associated with each optimal action, which accumulates as the policy

progresses.

As depicted in Figure 4.7, the States Visualizer panel provides a graphical rep-

resentation of policy states, allowing users to navigate through different stages of the

policy execution. This interaction supports the analysis of the evolution of attack-

defense dynamics in conjunction with the Tree Visualizer panel, facilitating a deeper

understanding of the impact of different actions.

4.4.1 Understanding Policy Representation

As previously mentioned, each policy consists of a set of states, each connected to the

next through an optimal action. In the States Visualizer panel, states are represented



CHAPTER 4. ADTVIEWER PLUGIN USER GUIDE 35

Figure 4.7: The States Visualizer panel displaying the graphical representation of
policy states and their transitions through optimal actions, along with cumulative at-
tacker and defender costs.

as vectors, where each element corresponds to a unique node label (nodes with the

same label are grouped into a single element). The value of each element in the vector

represents the state of that node within a specific policy state, as described in Section

4.2. Beside each vector, a tabular summary presents the total attacker and defender

costs, computed as the weighted sum of the temporal and monetary costs of all executed

actions up to that point.

As shown in Figure 4.8, the state vector is interactive: users can select one or multiple

nodes within a vector and see their selection reflected in the graphical representation

of the attack tree, and vice versa. This feature enhances usability by allowing users

to visually correlate policy states with the structure of the attack tree. Additionally,

users can navigate between states either by clicking on a state vector or by using the

navigation arrows available in the Toolbar. This seamless interaction is ensured by the

Tree Context Provider, which synchronizes all components, as explained in Section

3.4.2.

4.5 Actions Manager Panel

The Actions Manager panel introduces an important feature to the GUI, allowing

users to interact directly with PANACEA. Given an existing attack tree and a previ-
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Figure 4.8: Interactive selection of policy states, with real-time mapping to the Tree
Visualizer panel.

ously computed policy, users may choose to exclude certain actions, effectively removing

specific attack paths from the tree. This feature is particularly valuable for simulating

various scenarios, such as assuming that certain vulnerable nodes have been “fixed” or

analyzing a subset of the available actions. The interface of the Actions Manager

panel is shown in Figure 4.9, where users can manage actions through an interactive

table.

By applying these modifications, PANACEA can compute a new optimal policy and

return it to the user. At this point, the user can interact with the newly generated tree

using all of the previously discussed functionalities. In addition, new features become

available, such as policy comparison, which will be discussed in Section 4.7 through the

Policy Comparison Chart panel.

4.5.1 Excluding Actions from Policy Computation

The Actions Manager panel presents all available actions in a tabular format, equipped

with filtering and sorting functionalities. This interactive and dynamic table provides

users with two key capabilities:

1. Selecting an action: Clicking on a row highlights the corresponding node in



CHAPTER 4. ADTVIEWER PLUGIN USER GUIDE 37

Figure 4.9: Overview of the Actions Manager panel, showing the interactive table for
managing actions.

the attack tree. Thanks to the Tree Context, users can easily establish a visual

reference for the selected action.

2. Flagging an action: Each row contains a flag icon that, when clicked, marks

the action as excluded from policy computation. The flagged row turns red, and

during the tree export process, a field hidden=true is assigned to all flagged

actions.

Multiple actions can be flagged at once, and actions with the same label are automat-

ically flagged together. As explained in Section 3.4.5.1, flagging an action effectively

removes the entire subtree rooted at the flagged action(s) from the policy computation.

Once the desired actions are flagged, users can enter a custom name for the new pol-

icy. If no name is provided, one is automatically generated. The policy recomputation

process is then initiated by clicking the Export Configuration button.

A sequence diagram illustrating this interaction in detail is shown in Figure 3.7.

4.5.2 Visualizing the Updated Attack Tree and Policy

After the new policy computation is complete, a new attack tree and a new policy

are generated. The updated attack tree maintains the same structure as the original
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one, but excluded subtrees are now displayed in gray. Users can still interact with these

grayed-out nodes to retrieve information, but they are no longer considered in the policy

computation. This visual distinction allows users to immediately recognize which parts

of the attack tree are being considered and which have been excluded.

Similarly, the new policy reflects these modifications. The States Visualizer panel

updates the state vectors, which now contain fewer elements, corresponding to the

remaining nodes. Furthermore, the optimal actions between states may differ from

those in the original policy, as there are less available actions now.

Figure 4.10 illustrates an example of the updated attack tree and its corresponding

policy representation after excluding actions.

Figure 4.10: Updated attack tree (left) and modified policy representation (right) after
excluding actions.

This functionality provides users with an effective way to analyze alternative attack-

defense strategies, simulate different security measures, and gain deeper insights into

the dynamics of attack trees and their associated policies.

4.6 Cost Chart Panel

The Cost Chart panel allows users to visualize the monetary and temporal cost evolu-

tion throughout the different states of a computed policy. This panel presents a dynamic
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line chart, where the x-axis represents the policy states, and the y-axis represents the

objective function value, defined as the weighted sum of monetary and temporal costs.

This visualization provides users with both a general overview of the policy cost

and the ability to identify costly state transitions, where a single action significantly

increases the total cost. The graph includes three key curves:

• The attacker objective function, which quantifies the cumulative cost for the

attacker and is displayed in red.

• The defender objective function, representing the cumulative defender cost

and shown in blue.

• The total objective function, which combines both attacker and defender costs,

plotted in purple.

4.6.1 Visualizing Cost Evolution Across Policy States

The Cost Chart panel provides an interactive visualization that dynamically updates

as users navigate through policy states. The current state can be changed using the

navigation controls in the Toolbar, by clicking on a vector in the States Visualizer

panel, or by directly interacting with the Cost Chart panel itself. When the selected

state changes, the chart adjusts accordingly, highlighting the cost values up to the

current state while keeping future states visually distinct.

As illustrated in Figure 4.11, the chart displays three curves representing the at-

tacker, defender, and total objective functions. The attacker’s cost function is displayed

in red, with a semi-transparent red area shading past states, while the defender’s cost

function is shown in blue, with a similar blue shading for past states. The total cost

function is plotted in purple, summarizing the combined cost of both attacker and de-

fender. Future states that have not yet been reached remain gray, providing a clear

distinction between executed and upcoming actions.

Users can hover over the lines in the chart to obtain detailed information about the

current state and the corresponding values of the objective functions. This interactive
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Figure 4.11: Cost evolution curves for the attacker (red), defender (blue), and total cost
(purple). The shaded areas highlight past states, while future states remain in gray.
The tooltip displays the objective function values at the selected state.

tooltip displays the state number and the exact cost values for the attacker, defender,

and total objective functions up to that state, as shown in Figure 4.11. This feature

helps users quickly analyze cost trends and detect critical transitions, where a specific

action causes a significant increase in cost.

4.6.2 Cost Breakdown: Attacker vs. Defender

The Cost Chart panel also enables users to analyze how the overall cost is distributed

between the attacker and the defender. In an attack-defense model, these two entities

incur different costs depending on their roles in the system. The attacker’s costs include

financial expenses, execution time, and resource investments required to carry out an

attack, while the defender’s costs represent the effort needed to mitigate or prevent

attacks, such as deploying countermeasures or reinforcing system defenses.

As illustrated in Figure 4.11, the chart provides a clear view of how each policy state

contributes to the cumulative cost for both parties.

Additionally, the objective function can be adjusted to assign different weights to

monetary cost and execution time, allowing users to explore alternative scenarios where

either factor is prioritized.



CHAPTER 4. ADTVIEWER PLUGIN USER GUIDE 41

4.7 Policy Comparison Chart Panel

The Policy Comparison Chart panel allows users to analyze multiple policies simul-

taneously, providing a visual representation of their trade-offs in terms of monetary cost

and execution time. This feature is particularly useful for evaluating different attack-

defense strategies and selecting the most effective response to a given attack scenario.

4.7.1 Comparing Multiple Policies

The panel presents a line chart where each policy is plotted based on its execution time

(x-axis) and monetary cost (y-axis). Each line represents a distinct policy, allowing

users to visually compare how costs evolve over time for different strategies.

As shown in Figure 4.12, users can select multiple policies from a list and display

them on the same graph. Additionally, users can interact with the graph by hovering

over specific points to retrieve precise information about each policy’s metrics at a given

time step. The tooltip provides details such as the policy name, total time required,

monetary cost, and the computed objective function value. This feature enhances the

comparison process by allowing for a more granular evaluation of the differences between

policies.

Figure 4.12: Comparison of multiple policies, illustrating their trade-offs between time
and monetary cost. The tooltip provides detailed information about a selected policy.



Chapter 5

Case Study

This chapter presents a case study in which we analyze two different attack-defense sce-

narios using the ADTViewer plugin and the PANACEA framework. All visualizations

presented in this chapter are generated using the plugin itself. In the first scenario,

we consider an unrestricted attack path, following the optimal policy computed by the

framework. In the second scenario, we mitigate the attack by flagging and removing

the action pathTraversal. By comparing the two cases, we can evaluate the impact of

mitigation strategies on the attack path and cost distribution.

5.1 Attack Scenario 1: Unrestricted Attack Path

In this scenario, the attack path is executed without any restrictions, meaning all avail-

able attack and defense actions are permitted. The root node of the attack tree rep-

resents the attacker’s final objective which is data exfiltration, supported by various

attack steps such as reverse shell, file access, and buffer overflow exploits. There are

also available several defense actions such as Apache reconfiguration, file encryption,

and credentials change. Figure 5.1 illustrates the initial structure of the tree.
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Figure 5.1: Attack defense tree structure. Red nodes with full border are Attribute
nodes, red nodes with dashed border are Action nodes. Green nodes represent defender
actions.

5.1.1 Description of Attack Path

The optimal attack sequence computed by PANACEA unfolds as follows. The attack

begins with webRecon, a malicious action that aims to collect information on the web

server. With this newly acquired information, the attacker proceeds, but at this stage,

the defender intervenes by executing deactivateSOCKS5Proxy, a defensive measure

designed to disable a proxy service that could facilitate malicious access. After that,

the attacker exploits a pathTraversal vulnerability, which grants unauthorized access

to restricted directories. In response, the defender takes a countermeasure by executing

reconfigureApache, an action intended to mitigate misconfigurations in the Apache

server and reinforce its security.

Figure 5.2 illustrates the evolution of the attack path according to the optimal policy

computed by PANACEA, showing the sequence of actions taken by the attacker and

the associated costs for both the attacker and the defender.
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Figure 5.2: Attack path evolution following the optimal policy, highlighting attacker
and defender costs at each step.

5.1.2 Cost and Impact Analysis

The graph illustrated in Figure 5.3 shows how costs accumulate across the different

policy states, highlighting the increasing investment required to progress through the

attack path, as well as the defensive mitigation expenses incurred by the system.

Figure 5.3: Cost dynamics between the attacker and defender in Scenario 1.
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As shown, the introduction of defense actions like deactivateSOCKS5Proxy and

reconfigureApache adds cost to the defender, but also affects the efficiency of the

attacker.

Beyond financial implications, the potential impact of this attack scenario could

extend across multiple aspects of an organization. Unauthorized access to sensitive files

might result in severe data breaches, potentially leading to leaks and privacy violations.

These security failures could carry significant financial repercussions, as organizations

may face costs associated with incident response, regulatory fines, and even potential

ransom payments. Additionally, operational disruptions caused by the compromise of

critical systems might lead to service downtime, reducing productivity and affecting

business continuity.

5.2 Attack Scenario 2: Mitigated Attack Path

In this scenario, we introduce a mitigation strategy by flagging and removing the path-

Traversal attack action. As shown in Figure 5.4, the modified attack tree retains the

overall structure of the original tree illustrated in Figure 5.1. However, the node and

subtree associated with the pathTraversal action is now grayed out, indicating that

it is no longer accessible in potential attack paths. This mitigation directly impacts

the attacker’s ability to exploit this vulnerability, forcing them to pursue alternative,

potentially costlier, or less effective strategies.

5.2.1 Description of Attack Path

The updated optimal attack sequence computed by PANACEA unfolds as follows. As

in the unrestricted scenario, the attack begins with webRecon, allowing the attacker

to collect information on the target system. However, in this mitigated scenario, the de-

fender takes proactive measures by executing changeCredentials, thereby reinforcing

authentication mechanisms. In response, the attacker adapts their approach and at-

tempts a bufferOverflow attack, aiming to escalate privileges and gain execution con-
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Figure 5.4: Attack defense tree representation after flagging the pathTraversal action.
The node associated with the pathTraversal action, along with its subtree, is grayed
out, indicating it can no longer be part of attack paths.

trol over the system. The defender reacts by implementing changeFilePermissions,

which restricts access to sensitive files in order to minimize potential damage. Despite

these defensive interventions, the attacker ultimately proceeds with exfiltrateData,

achieving data extraction, although with increased difficulty and associated costs.

By eliminating the pathTraversal action, the structure of the attack path is altered,

necessitating alternative exploitation methods that influence both operational efficiency

and resource consumption.

5.2.2 Cost and Impact Analysis

To further assess the implications of the mitigation strategy, we analyze the cost evo-

lution for the mitigated attack path. Figure 5.5 presents the cost distribution between

the attacker and the defender throughout the execution of the revised policy.

The mitigated attack path introduces increased costs for the attacker, requiring ad-

ditional steps to achieve their objective. Similarly, the defender incurs a higher cost



CHAPTER 5. CASE STUDY 47

Figure 5.5: Cost evolution chart for the mitigated attack path.

due to proactive security measures such as changeCredentials and changeFilePer-

missions. These defensive actions contribute to the overall cost of protection, but

effectively alter the attack dynamics, making it more difficult and resource-intensive for

the attacker to succeed.

5.3 Comparative Analysis of Attack Scenarios

To evaluate the impact of the mitigation strategy, we compare the evolution of the

cost in both scenarios. Figure 5.6 provides a comparison of the policy costs in the

unrestricted and mitigated cases.

From the graph, we observe several key differences between the two scenarios:

• Increased Attacker Cost: The mitigated scenario forces the attacker to take

alternative, often more complex, steps to achieve the attack goal. This results in

higher cumulative costs and extended attack duration, as the attacker needs to

find and exploit different vulnerabilities.

• Higher Defender Investment: The defender incurs additional costs in the

mitigated case due to proactive countermeasures such as changeCredentials

and changeFilePermissions.
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Figure 5.6: Comparison of policy costs for unrestricted (blue line) and mitigated (purple
line) attack paths.

• Impact on Attack Efficiency:In the unrestricted scenario, the attack follows

a more direct and cost-efficient route. In contrast, the mitigated attack path

introduces additional barriers, making it less efficient for the attacker. This change

suggests that even partial mitigations can disrupt and complicate an adversary’s

plan, potentially discouraging certain attack paths.

Beyond the cost dynamics, it is important to consider the broader implications

of these findings. By analyzing how mitigations affect the overall attack path, security

teams can better allocate resources to counter the most impactful threats. Furthermore,

the results suggest that combining multiple defensive actions can lead to a more resilient

system, even if the attack goal remains theoretically achievable.



Chapter 6

Conclusions and Future

Developments

This thesis presented the design and implementation of a Graphical User Interface for an

Intrusion Response System, focusing on attack tree analysis and the integration of game-

theoretic security modeling. The developed system, implemented as an OpenSearch

Dashboards plugin, provides an intuitive visualization of Attack Defense Trees, enabling

security analysts to better understand, modify, and evaluate different attack-defense

scenarios. Using the PANACEA framework in conjunction with PRISM-Games, the

solution facilitates decision-making processes by computing optimal defense policies

and presenting them within an interactive environment.

6.1 Summary of Findings

This thesis has introduced a structured approach to attack tree analysis, addressing

limitations in existing solutions through the following contributions:

1. Design and Implementation of a Modular GUI: The ADTViewer plugin

provides a user-friendly interface, enabling users to interact with attack defense

trees without relying on the use of command-line interfaces or formal verification

methods.
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2. Integration with OpenSearch Dashboards: The plugin’s integration with

OpenSearch Dashboards allows seamless interoperability with Security Informa-

tion and Event Management (SIEM) solutions such as Wazuh, providing users a

more comprehensive threat monitoring and analysis environment.

3. Automated Attack Policy Computation: The integration with PRISM-

Games allows users to generate optimal attack-defense strategies, providing a

systematic way to assess security risks and mitigation measures.

4. Scenario Analysis and Policy Comparisons: The plugin facilitates the eval-

uation of alternative defensive strategies by allowing users to modify attack trees

and compare different security policies, supporting informed decision-making.

6.2 Limitations and Challenges

Despite its advantages, the current implementation presents some limitations that should

be addressed:

1. Computational Overhead: The process of generating optimal policies can be

resource-intensive, particularly for large and complex attack trees.

2. Dependency on External Tools: The reliance on PRISM-Games for policy

computation requires users to have access to specific verification frameworks,

which may pose challenges for deployment in restricted environments.

3. User Experience Improvements: While the interface is designed for usability,

further refinements in navigation and interactivity could enhance the overall user

experience.

6.3 Suggestions for Future Development

To further advance this research and improve the effectiveness of the tool, several future

developments are proposed:
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1. Performance Optimization: Implementing caching mechanisms and optimiz-

ing API calls can reduce computation time and improve responsiveness.

2. Extended Support for Defensive Measures: Enhancing the tool to model

and visualize more complex defensive strategies, including adaptive responses and

real-time countermeasures, would broaden its applicability.

3. Integration with Machine Learning Techniques: Leveraging AI-driven anomaly

detection and risk assessment models could provide automated recommendations

for security policies.

4. User Feedback and Iterative Improvements: Conducting user studies and

gathering feedback from cybersecurity specialists would help refine the interface

and functionalities to better meet practical needs.

In conclusion, this thesis has demonstrated the feasibility and benefits of a GUI-

based approach to attack tree analysis, effectively bridging the gap between theoretical

security models and practical applications. By making advanced cybersecurity modeling

tools more accessible, this research contributes to improving the efficiency of security

decision-making and response planning. Continued development and integration with

emerging technologies will further enhance its impact, enabling organizations to stay

ahead of evolving cyber threats.
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